five monatomic gases [4], along with the results of Meyer and Sessler [5] (see Fig. 1). The experiments
show that all five gases behave identically. Equation (2.13) is applied to the experimental results for ap =
—0.12. It is evident from Fig. 1 that agreement between theory and experiment is obtained up to r = 0.15,
which corresponds to a Knudsen number of order unity (5].

The Predvoditelev equations can therefore be used in describing rarefied gas flows up to Knudsen num-
bers close to unity.

NOTATION

V, hydrodynamic velocity vector; u, viscosity; p, density; ¥, specific heat ratio; g9, Laplace value of
the velocity of sound; w, cyclic frequency; cy, specific heat at constant volume; g, phase velocity of sound;
Alus Aloy Alps AIT, parameters of first-order discontinuity; Aoy, A2T, parameters of second-order discon-
tinuity; k, thermal conductivity; R, universal gas constant. '
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FLOW AND HEAT TRANSFER IN A JET NEAR THE
STAGNATION POINT OF A CONCAVE BODY

I. A. Belov and S. A, Isaev UDC 536.242:532.522.2

Results are presented of calculations of flow and heat transfer near the stagnation point of a
‘concave body in a two-dimensional subsonic jet, using a flow establishment method.

The interaction of a jet flow with blunt bodies is usually taken to mean the flow near the stagnation
point, outside the region influenced by the body shape. We consider the problem of specifying such a flow
near the surface of a concave body of constant curvature, located in a subsonic jet. The flow is assumed to
be two-dimensional, and the fluid is assumed to be incompressible and viscous near the body surface. We
restrict the analysis to a small region near the stagnation point, and represent the flow of the jet far from
the surface as being approximately the flow from an ideal source.

_ In the body-fixed coordinate system (%, ©), (Fig. 1), where the £ axis is tangent to the body surface, and
the ¢ axis is normal to it, we select the section £ = ., where the source flow velocity is known and equal to
Vo. We consider that the section £, is at a considerable distance from the obstacle, so that the effect of the
obstacle on the source flow is negligibly small here. The flow is symmetric relative to the obstacle center
£ =t = 0, and the external flow is irrotational; the effect of viscosity is localized in a thin boundary layer
near the obstacle surface. The problem is solved in two stages._In the first stage we seek a solution in the
region where the source flow and the obstacle interact (0 = £ = ), and we formulate boundary conditions
for the viscous flow and heat transfer in the obstacle boundary layer. In the second stage we consider the
establishment of a boundary layer on the obstacle, and determine the friction 7 and the heat flux gy fo the
surface. The problem is solved by a flow establishment method, applied to the unsteady boundary-layer equa-

Transiated from Inzhenerno- Fizicheskii Zhurnal, Vol. 30, No. 2, pp. 301-309, February, 1976. Original
article submitted October 4, 1974.

This material is protected by copyright registered in the name of Plenum Publishing Corporation, 227 West 17th Street, New York, N.‘Y. 10011. No p'art
of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, fr:echanzcal, photocopying,
microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $7.50.

196



7XA
Voo
bos
(€, L)j’—‘g
/2
Yoo 270
.5.._—:’0‘0 "ca ° £
o o ° L] y‘]’
J : X

Fig. 1. Flow scheme.
tion. The obstacle surface temperature "fw and the external flow temperature Too are considered constant.

1. We consider flow from an ideal source near the stagnation point £=7= 0, which coincides with the
center of the obstacle (Fig. 1). The equations determining this flow have the form

Ou d

1 — K2 =0, B
P + 7 [v(1 — KLy
au d
— — - =0, (2
% P fu(l — Ko )

where u, v = [{0, v)/Vwo]; €, € = [(& £)/Ew]; u and v are the velocity components along the £ and ¢ axes, re-
spectively; and K is the curvature of the obstacle (0 < K < 1).

Near the stagnation point we seek a solution for u and v inthe form
u=Ef"(f), v=—FO/1—KD.

The function f{{) was determined from Eq. (2),

FIf = Ki(1 — K9) 3)
with the following boundary conditions:
c=0, [=0 =1 f=1-K
Then for u and v we obtain
w=EK (K — 1)/In(l — K) (I — K©), (4)
v={(K—1)In(l —K)/n(l — K)/(1 — K2). (5)

2. For the analysis of the flow and heat transfer in the boundary layer we use a rectangular coordinate
system (x, y), with origin at the obstacle center x =y = 0. We adopt the notation 7 = (¥ ~ yp)A Vo ~ VT )s
where Y. is the thickness of the viscous layer yT on the obstacle surface. With this notation the system of
equations describing the flow and heat transfer in the boundary layer has the form

U U v v 1
T, - . =0 (6)
ox o YooY oM Yeo Uy
U au ou 1 L au Y, dp *U i
e e +V . —l— . == 1 — 2; (7
ot 0x M Yoy, M Yoy ox on e — 1) :
2
o, yor o 1 _p U 1
ot Ox on Yoo — Yy an? (Yo — Yo)*
1 T 1 U or 7 @)
T R N R TR
where
U= y ; V=*_V i T = _T ; p:_P, v:—j_,
Ve Ve Teo oV Lo
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Sl 73 y-—-yT_ §= yl_/Re; t=tY°°
Yo yT Cw Cu’e
We solve Eq_s. (6)~(8) with the following boundary conditions:

t>0,0=0, U=V=0, T=T,= const,

(9)
n=1 U=U 1), T=T.=1,

and at t = 0 we use Eqgs. (4) and (5) for the veloéity components in the coordinate system (x, 1)
U=uvsin® +ucos®, V=(@wcos$—usingd))/ Re,

where i ;
_ DPsing In (Kx/sin )
=— B(K), v=——HMY) g k)
“ Kx w0 Kx/sing @)
¢ = arctg (Kx/(1 — Ky)), @ (K)=(1—K)/In(1—K),

=Yz + (= —y:)l/VRe,

and the fluid temperature is assumed constant and equal to T = T_ = 1.

In order to find an additional boundary condition for the V component of velocity on the axis of sym-
metry (x = 0), we represent the solution for the U velocity component in the immediate vicinity of the sym-
metry axis in the form [1]

= xUl{t, x, W),
—ay—zUl(t, X, M)+ x U1 , ud =Ul({, 0, n).
O0x 0x 0x  ly=o

Similarly, we write an expression for the velocity at the outer edge of the boundary layer, for n =1,
U, =U(x, 1)=xUl (¢, x),

!
Wy _ W gy, Y|y,
ox ox i 0x  ix—0
Taking into account these relations, from the Bernoulli equation we find
_ % _ = xU12 4+ 0 (x?).
ox
Then Egs. (6) and (7) for x = 0 can be written in the form
, 1 v
Ul—.—y — . 07\ =0, . (10)
7 2 ‘ ‘
aUl Ly autl 1 _ 1 Lol UL UR. 11
ot M Yo—Yr Yoy O

The boundary conditions for solving Egs. (10) and (11) for Ul and V are

n=0, Ul=0, V=0, (12)

n=1, Ul->Ul,

Since the fluid in the boundary layer is incompressible, this system of equations is solved separately for the
dynamic and thermal problems.

3. In order to construct a finite-difference analog for the above system of equations we divide the region
of integration into a number of cells Ax=Q, An =H. Then x= (i—1) Q, n=(j —1) H, We introduce a time
step At, such that t = mAt. We use forward differences for the time derivatives and central differences for
the derivatives with respect to x and 7. Equations (6) and (7) in finite-difference form can be written as

(UFF — UR VAL + UF WU — U )(2Q) + Vi Vil —
— VP VE@H) (Yoo — Y ) = — Opldx + (U1 + Ul — U HA (Y= —Yo)* + UT Yo lUP 1 — Uil CH)i e — 3:), (13)
[Uf"?L—lx—L/_m:TX;—l Ut — UPE1@Q) + VIR — VIR 1+
VI VI @H e — g0 ) = e WUET — UPE! oy + UET — ULV @E) (e — e )- (14)
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Fig. 2. Velocity profiles (a) in the obstacle bound-
ary layer with K = 0.4; Re = 10* (solid curve); the

Hiemenz for K = 0 [3] {broken line) and tempera~

ture profile (b) in the obstacle boundary layer for
K =0.4; Re = 10% Ec = 0; Pr =1.0; 1 — Ty = 0.25;
2~0.5; 3—0.75

<

1! = U yaL = WP U — 2UIFUHR e — ) — WP VT U1 — U@ (e ) (15)
VI = VT — 2HUL (g — y1). (1)

In choosing relations between At, Ax, and A7, we used the following stability conditions for the bound-
ary-layer equations in finite-difference form [2]:

At LUT 1A% - 2/(An)3), An < 20V an
Equations (13) -(16) with boundary conditions (9) and (11) were solved using the following scheme.

1, At time t = 0 we consider U and V to be equal to the corresponding values obtained from solution
of the ideal problem.

2. At time At from Eq. (15) we find Ul, from the known values at time t = 0. Then, using an iteration
method, taking into account the boundary conditions on the obstacle surface, from Eq. (16} we find the V com-
ponent of velocity on the axis of symmetry,

VIR = Vi o V) — UL2H (e — 9 — VL,
where the index k denotes the iteration number, and « is a relaxation coefficient, assumed equal to 1.85.

(k D (k) | < €, at the control points, where € is the allowable error in

After satisfying the condition | V1
the solution, we recalculate the velocity gradlent on the axis of symmetry,
Ulj=— Vi, — Vi, CH) (G — 1),
which is used in the calculations at the next time step.
3. Solution of Egs. (13) and (14) at time At for x > 0 is carried ouf analogously.
4. We repeat operations 2 and 3 at successive times to obtain the established solution.

During the solution we determine the velocity field in the boundary layer and the friction on the cbsta-
cle surface,

., 1 (1= Ky U | 1 Kot W
T W T VRe [ K (1 —Kg)® Oy lv=s, T Re Kt (1— Ky)? ox HJ'
For a small region near the stagnation point the friction is assumed to be approximated by the expression
. - ,i“ S oU _ b i _ou _
“ VRe 0y lym, VRe Yo—# O L, (18)

The time of flow establishment is determined by obtaining a value for the friction on the obstacle surface
which repeats with a given accuracy.

In solving the thermal problem we use the earlier results of calculating the velocity in the boundary
layer. Equation (8), in finite-difference form, has the form

(TEF —TEAIMt 4+ U, 1T — T 2Q) + Vi 5 [T g —
— T l@H)/ (Y — ) = Uy, g 1T — TEl(@H) (g — ) e+
+Ec [U1,1+1 + Ux,J 1T QUi,j]l’HZ/(yw - y.,) [T:‘,,Li+l + T:'T.Li-l - QT;r.li]/'Hz/pr./(.'/m — )R (19)
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w

There are no particular difficulties in solving Eq. (19) for T;njﬂ, with constant temperature conditions
9

at the obstacle surface and at the outer edge of the boundary layer. The initial values for temperature and
velocity in the boundary layer at time t = 0 were assumed to be as follows: T =1, and U and V have their
values at the time of flow establishment in the boundary layer. During the solution the temperature field in
the boundary layer was determined. From the well-known law for temperature distribution in the boundary
layer, we further calculated the heat flux from the fluid to the wall: ’ '

9 Lo 1 —Ky .
— —= S —— e

AT.. v K3 4 (1 — Ky)® Ay
For a small region near the stagnation point the latter expressions take the form

i
Gu=V Re . E__
Yo — Yy an

. Kx o or
v=y, V K32 + (1 —Kyp? 0x  |ymy, -

qw =

(20

N==0

The time for establishment is the same as in calculating friction, and was determined by obtaining a value of
heat flux to the obstacle which repeated with time with a given accuracy.

5. The dynamic and thermal problems were solved on the BESM-4 computer. In both cases the same
21 X 21 computational mesh was used. The initial data chosen were:H = 0.05; Q = 0.025; At = 1078 (the first
25 steps) and At = 107* (subsequent steps); y, = 1.0; € = 10°%; Tw = 0.25, 0.5, and 0.75; Re = 10%; Ec=0;
Pr=1.0. The body curvature varied in the range 0 < K <1, Some of the computer results, obtained at the
time assumed for the solution to establish, are shown in Figs. 2-4.

Figure 2a shows the profiles of the U and V velocity components at the time of flow establishment in
the boundary layer on an obstacle with curvature K = 0.4, at time step 131 for Re = 10%. We note that, unlike
flow near the stagnation point of a two-dimensional obstacle normal to a uniform external stream [3], for flow
over an obstacle of concave shape there is a layer near the surface where the V component changes sign; the
U velocity component profile is close to the theoretical Hiemenz profile for flow of a uniform stream over a
perpendicular obstacle [3], but differs in magnitude from the latter. The broken curve in Fig. 2a corresponds
to the Hiemenz solution U = U(¢), where @ = VB/vy, B is the velocity gradient at the stagnation point. Since
the flow velocity at the outer edge of the boundary layer near the stagnation point for two-dimensional and
concave obstacles is given by the linear relation T =ﬁ_§, in terms of the coordinate over the obstacle surface
£, it follows from solution of the problem of interaction of a perfect stream with an obstacle that the _v_elclcity
gradient at the stagnation point of the obstacle is B =K(K-1) Vw/é‘w/ln(l —K), and for K= 0,8~ Vo /L.
Typical profiles of the temperature in the boundary layer near the stagnation point are shown in Fig. 2b for
K =0.4; Re = 10'; Ec =0; Ty = 0.25 {curve 1); Ty = 0.5 (curve 2); Ty = 0.75 (curve 3).

Figure 3a shows the distribution of the established wall friction in the form Tw\/ie = f(x) for Re =10%
and K = 0.2 (curve 1), for K= 0.4 (curve 2), and for K = 0.6 (curve 3). Figure 3b gives the heat flux distribu-
tion over the obstacle surface under the same conditions in flow with Ec = 0; Ty = 0.25,

It is interesting to compare the results obtained with the friction and heat flux values near the stagna-
tion point, determined for a uniform stream normal to a two-dimensional flat plate obstacle. In this case, we
can write the following expression [3] for the friction:

Tp _ o UVE _ EC

- 2

T, —

wip™ o2 V2 ' Re
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where

U="V. B=Vui., C=123259.

The data presented in Fig. 3a show that ’TW VRe is a linear function of £ near the stagnation point for a con-
cave ohstacle: Tw\/ﬁé Ci&, where Cy = £(K), and, therefore, the ratio TW/wap C;/C. Taking into ac-
count the values obtained for Ci, the ratio Tyw/Twf,p for Re = 10* is shown in Fig. 4a (curve 1). If we use
the formula for the friction near the stagnation point of a plate washed by a uniform normal stream in calcu-
lating the friction on a concave obstacle, i.e., if we compute only the variation in the velocity gradient at the
stagnation point of the obstacle because of the curvature, then we obtain

Tl Tt p= K (K — D)/In (1 — K)]'"",

as follows from the expression for the velocity gradient at the stagnation point of a concave obstacle. The
results of the calculation using this formula are shown in Fig. 4a (curve 2). Similarly, we can compare the
heat flux at the stagnation point of a concave obstacle and on a plate washed by a uniform normal stream. In
the latter case we have [3]

Nuf-P= _oi}}_f;m — Cz ]/-R*e,

where C; = 0.57 Pr°'4; ?if'p is the coefficient of heat transfer for the plate. For a concave obstacle, from
Eq. (20) we obtain

af. T
NU = = = ="me
bp=5 To—T, T

where @ is the heat-transfer coefficient for a concave obstacle. Taking the latter expressions into account,
the ratio Nu/Nugp has the form

Nu T T
Nug, Co(Tw—T,) 1 Re’

Using numerical values for oy (Fig. 3b), obtained with Re = 10%; Ec = 0; Pr = 1.0; Ty = 0.25, the ratio
Nu/Nug,p is shown in Fig. 4b. If the heat flux near the stagnation point of a concave obstacle is calculated
using the formula for qy for a plate washed by a uniform normal stream, i.e., if in a case with friction we
calculate only the variation in the velocity gradient at the stagnation point of a concave obstacle, in compari-
son with the gradient at the plate stagnation point we obtain

Nu c KEK=T1)
Nug l = K)
The results of the calculation using the latter formula are shown in Fig. 4b (curve 2).

V' Re.

The investigation conducted here allows us to conclude that the friction and heat flux near the stagnation
point of a concave body depend appreciably on the obstacle curvature. For the range of curvature investigated,
0.2 = K=0.6, the friction and heat flux near the stagnation point of a concave obstacle are greater by a factor
of 2.5 than the corresponding values for a flat plate washed by a uniform normal stream. A calculation of
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friction and heat flux at the stagnation point of a concave obstacle, using relations for a two-dimensional flat
plate, accounting for variation in the velocity gradient at the stagnation point of the obstacle, gives underes-
timated values (by a factor from 3 to 8), compared with the present results.

NOTATION

£, £, axes of the body —fixed coordinate system; £ ., distance from the obstacle at which the effect of
the obstacle and the outer flow is negligibly small; x, y, rectangular coordinate system axes; y.,, thickness
of viscous layer on the obstacle; yT, coordinate of the obstacle surface; 7, transformed coordinate; t, time;
¢, slope angle of the velocity vector V,, to the axis of symmetry; u, v, velocity components along the axes
&, £ in the region of interaction of an ideal flow with the obstacle; U, V, velocity components along the x and
y axes in the obstacle boundary layer; V., velocity at section £ .; Ul, gradient of U in direction x; 8,
velocity gradient at the obstacle stagnation point; p, density; T, temperature; Ty, wall temperature; T,
temperature of outer flow; p, pressure; #, dynamic viscosity; A, thermal conductivity; Cps specific heat; a,
heat-transfer coefficient; K, curvature of obstacle; Ty, friction on the obstacle surface; gy, heat flux to the
obstacle surface; Q, H, sizes of computational mesh cell in the direction of the x and 7 axes, respectively;
At, time step; i, j, m, cell numbers in the directions x, 7, and t; k, iteration number; w, relaxation coef-
ficient; Re = 0Veoloo/ 1, Reynolds number; Pr = EPTL/R, Prandtl number; Ec = Vi( cpTco), Eckert number;
Nu = af,A, Nusselt numbers. Indices: 0, parameters at the outer edge of the boundary layer; f.p, parame-
ters on a two-dimensional flat plate, positioned normal to a uniform external stream; —, dimensional value.

LITERATURE CITED

1. V. M. Paskonov, in: Some Applications of the Mesh Method, No. 1 Boundary-Layer Flows [in Russian],
Izd. MGU (1971). :

C. L. S. Farn and V. S. Arpaci, AIAA J.,, 4, 730 (1966).

3. L P. Ginzburg, Theory of Hydraulic Resistance and Heat Transfer [in Russian] Izd. LGU (1970).

ko

MECHANISM OF BOILING ON SUBMERGED
SURFACES WITH CAPILLARY-POROUS COATING

O. N. Man'kovskii, O. B. Ioffe, UDC 536.423.1
L. G. Fridgart, and A. R. Tolchinskii

An approximate model is proposed for the process of boiling in a porous layer. The model shows
satisfactory qualitative and quantitative agreement with experimental data over a wide range of
heat fluxes.

Heat-transfer surfaces with capillary-porous coatings have been arousing much interest among re-
searchers, since boiling seems to occur on them somewhat more intensely than on uncoated surfaces. In
particular, it has been noticed that boiling on porous surfaces may occur for very small temperature differ-
ences, hence permitting the transfer of large heat fluxes in thermodynamically favorable conditions.

The study of this phenomenon is known to present certain difficulties, since its mechanism is deter-
mined by heat-transfer processes that occur inside the structure of the capillary-porous layer, where they
are inaccessible to visual observation and direct measurement. Probably as a result, the literature has so
far lacked any general methods allowing the calculation and analysis of this process on the basis of specified
properties of the medium, parameters of the porous layer, the characteristics of the coating material, and
the temperature difference. Experimental results and empirical correlations were presented in [1-3],
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